Application Design Considerations for Roadrunner and Beyond

Brian J. Albright

Applied Physics Division, LANL

Los Alamos Computer Science Symposium

Oct 14, 2008

Acknowledgments

- Kevin Bowers, Ben Bergen, Lin Yin, Thomas Kwan, Charlie Snell, K. Barker, D. Kerbyson, J. Turner, S. Swaminarayan, Tim Germann, Paul Henning, Tim Kelley, Ken Koch, Mike Lang, Jamaludin Mohd-Yusof, Scott Pakin
- IBM

ASC, LDRD

Outline

- Trends in supercomputing and opportunities for science
- Changes in approach to programming on these platforms
- Roadrunner
- How Roadrunner exposes what one must do to use platforms effectively
- Case study: VPIC design and how we evolved to use the architecture
- Performance and outlook

In the next 10 years, rapid increase in computing power will change the science landscape

- Petaflop/s computing is here today
- In ten years, we'll have Exaflop/s
- With a few exceptions, experimental or observational facilities will <u>not</u> see a comparable increase in fidelity/size/scale.
- Many if not most of the major discoveries in the next decade will be fueled by computation
 - Plasma and high-energy-density science: "at scale" kinetic modeling of many decades-old problems
 - Materials modeling: full-grain and multi-grain ab initio modeling
 - Predictive climate modeling
 - Computational cosmology
 - Protein folding and computational drug design
 - Modeling of cognition

Another example: risk mitigation for ICF ignition experiments on the National Ignition Facility

- In 2010, fusion ignition experiments start on the multi-billion dollar NIF. The biggest source of uncertainty is whether laser-plasma instabilities (LPI) will prevent ignition. (See JASON Review Report JSR-05-340, Section 1.3 Critical Recommendations)
- Petascale supercomputing will help answer these questions.

VPIC modeling of a single laser speckle

LLNL pF3D modeling of a laser beam

Integrated LLNL Hydra modeling of ICF experiment

(Yin et al. PRL 2007; Bowers et al. ACM/IEEE Supercomputing 08 Gordon Bell Prize paper).

Another example: ab initio modeling can change our basic understanding of thermonuclear burn

Kinetic & collective physics can affect TN burn

The challenge for modeling: span the large separation in length and time scales:

$$\omega_{\rm pe} \sim 3 \times 10^8$$
, $\omega_{\rm pi} \sim 4 \times 10^6$, $\nu_{\rm ce} \sim 60$, $\nu_{\rm cl} \sim 3$, $\nu_{\rm DT} \sim 1.3$ (ns⁻¹, NIF-relevant regime)

Collective & kinetic effects may supercede binary collisions

- Large α population may excite beam-plasma type instability Can change e-i split of α energy
- Non-maxwellian ions in Gamov peak can change ⟨σν⟩
- Magnetic fields reduce electron heat conduction (ICF)

Separation of time scales requires long, large-scale simulations

⇒ Cells, PF-scale machines

Caveat: Tomorrow's supercomputers probably won't look like today's

Processors are evolving toward hybrid, asymmetric mixes of general and special purpose

Intel's Microprocessor Research Lab

Intel's Visual Computing Group -, Larabee

nVidia G80 - 2006

Taken from publicly available information

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Hybrid computing is a transformational technology

Roadrunner is a different path to a petascale system

To applications programmers, each axis confers its own challenges

- Vertical axis: increased complexity
 - Deep memory hierarchies
 - Potentially limited localstore (e.g. 256k for Cell SPE)
 - Different instruction sets for accelerator chips
 - Tools are evolving to hide some of this complexity
- Horizontal axis: increased cost
 - Will today's apps that work fine on up to ~100k MPI ranks scale to billion-way parallelism (as required for Exaflop/s computing under the BGL model)?

Roadrunner exposes design concepts for achieving high performance on modern architectures

Roadrunner is a cluster of clusters of Cellaccelerated Opteron chips

Connected Unit cluster

180 Triblade compute nodes w/ Cells
12 I/O nodes

6,120 dual-core Opterons \Rightarrow 22.0 Tflop/s (DP) 12,240 Cell eDP chips \Rightarrow 1.3 Pflop/s (DP)

Eight 2nd-stage 288-port IB 4X DDR switches

Roadrunner is Cell-accelerated, not a cluster of Cells

Node-attached Cells is what makes Roadrunner different!

Cell Broadband Engine - quick anatomy lesson

Power Processing Element

8 Synergistic Processing Elements

8 SPE cores

- -128-bit SIMD instruction set
- Register file 128x128-bit
- Local store 256KB
- MFC
- Isolation mode

Element Interconnect Bus

System Memory Interface

Roadrunner lends itself to two general programming models

Host-centric model, e.g., SPaSM

Accelerator-centric model (inverted memory model), e.g., VPIC

Roadrunner: Performance Considerations

Roadrunner exposes design concepts necessary for achieving performance on modern architectures

- <u>Data motion</u> Overcoming memory latency and bandwidth limitations
 - DMA requests make data movement explicit and allow user to control when data are loaded
- Throughput Use SIMD intrinsics
 - SPE vector processing units offer increased throughput
 - Static scheduling makes performance analysis/prediction more reliable
- Concurrency Minimize thumb-twiddling
 - Support for data- and task-parallel programming models on SPEs
 - Problem decompositions for Roadrunner naturally adapt to homogeneous multicore architectures

<u>Data motion</u>: For example, SPaSM Molecular Dynamics (MD) implementation

Original SPaSM implementation

Designed when computation was more expensive than communication (e.g. Connection Machines)

- MPI processes advance through cells in lock-step
- Pair-wise force interactions are symmetric
- MPI send() and recv() calls used every time a remote neighbor is encountered
- Half neighbor list

New SPaSM implementation: use full ghost-cell buffering to reduce communication

Reduces latency with fewer messages and allows for more straightforward data-level parallelism

- Blue ghost-cell region updated outside of particle interaction loop using MPI calls
- SPE threads can compute force interactions asynchronously without inter-node communication
- Current implementation uses full neighbor list

VPIC design considerations for Roadrunner: a case study

VPIC is a Particle-In-Cell (PIC) kinetic plasma simulation method

Time Iteration

Spatial Domain

Bowers et al. Phys. Plasmas 2007

VPIC is a flexible, general-purpose plasma physics code

- Plasmas are ionized gases with very complex dynamics.
- Understanding plasmas is important to many systems in basic science and national security, including:
 - Thermonuclear burning plasma
 - Laser-plasma instabilities for inertial confinement fusion experiments
 - Magnetic fusion
 - Diode modeling, radiography
 - Laser-particle accelerators
 - Space and astrophysics
- VPIC has been used to model all of these systems and more.

VPIC overview

 VPIC integrates the relativistic Maxwell-Boltzmann system in a linear background medium:

$$\partial_{t}f_{s} + c\gamma^{-1}\vec{u} \cdot \nabla f_{s} + \frac{q_{s}}{m_{s}c} (\vec{E} + c\gamma^{-1}\vec{u} \times \vec{B}) \nabla_{u}f_{s} = (\partial_{t}f_{s})_{coll}$$

$$\partial_{t}\vec{E} = \varepsilon^{-1}\nabla \times \mu^{-1}\vec{B} - \varepsilon^{-1}\vec{J} - \varepsilon^{-1}\sigma\vec{E}$$

$$\partial_{t}\vec{B} = -\nabla \times \vec{E}$$

• Direct discretization of f_s is prohibitive; f_s is sampled by particles:

$$d_t \vec{r}_{s,n} = c \gamma_{s,n}^{-1} \vec{u}_{s,n} \qquad d_t \vec{u}_{s,n} = \frac{q_s}{m_s c} \left(\vec{E} \Big|_{\vec{r}_{s,n}} + c \gamma_{s,n}^{-1} \vec{u}_{s,n} \times \vec{B} \Big|_{\vec{r}_{s,n}} \right)$$

 Smooth J determined by the particles; E, B and J are sampled on a mesh and interpolated to and from particles

VPIC Design considerations for Roadrunner:

- 1. Data locality
- 2. Throughput
- 3. Concurrency

VPIC Design considerations for Roadrunner:

- 1. Data locality
- 2. Throughput
- 3. Concurrency

Data motion considerations forced our choice of programming model

ASC WYS

Accelerator-centric Programming Model

MPI traffic relayed through host

000

- Hides hybrid complexity
 - Single underlying implementation supports multiple architectures
- Avoids data movement bottleneck over PCI-e communication path
- Cons
 - Requires full port to Cell
 - Potential PPE bottleneck

MP Relay: message relay layer

More on data motion: single pass processing and particle data layout

 We limit the number of times a particle is accessed during a time step (or else performance is limited by moving particle data to and from memory). Single pass processing achieves this:

```
for each particle,
  interpolate E and B
  update u and compute movement
  update r and accumulate J
  if an exceptional boundary hit,
    save particle index and
    remaining movement
  end if
end for
```

- To further minimize the cost of moving particle data, particle data is stored contiguously, memory aligned and organized for 4-vector SIMD
- The inner loop streams through particle data once using large aligned transfers under the hood—the ideal access pattern

```
typedef struct {
  float dx, dy, dz; int i; // Cell offset (on [-1,1]) and index
  float ux, uy, uz, q; // Normalized momentum and charge
} particle_t;
```


Still more on data motion: VPIC was designed so that single precision would suffice

- Positions are given by the containing cell index and the offset from the cell center, normalized to the cell dimensions
- Various numerical "hygiene" techniques used
 - Divergence cleaning of E and B divergence errors
 - Radiation damping
- We are sensitive to roundoff (truncate gives about 10x the numerical heating as IEEE "round to even")

Yet more on data motion: maintaining locality in particle memory

Contiguous Memory

Compute Grid

Naïve initial particle distribution by voxel places particle data spatially "close" in memory

Yet more on data motion: maintaining locality in particle memory

Contiguous Memory

Compute Grid

Advancing particles potentially moves them into new voxels

Contiguous Memory

Compute Grid

New particle positions interleave memory access with respect to voxels

Contiguous Memory

Compute Grid

After several time iterations, particle data has lost spatial locality

Contiguous Memory

Compute Grid

Loss of spatial locality in data access impacts temporal access of field data and hurts performance

Contiguous Memory

Compute Grid

Numbering indicates original indices

Sorting particle data by voxel restores spatial/temporal locality

VPIC particle advance uses (software) LRU caches and triple buffering

VPIC Design considerations for Roadrunner:

- 1. Data locality
- 2. Throughput
- 3. Concurrency

Throughput: VPIC was designed around effective use of short-vector SIMD

- Programming languages (e.g. C, FORTRAN) are not expressive enough (e.g. data alignment restrictions) to allow compilers to use 4-vector SIMD in operations as complex as those in VPIC
- VPIC has a language extension that allows C-style portable 4-vector SIMD code to be written and converted automatically to high performance 4-vector SIMD instructions on a wide variety of platforms. A similar approach was used in Bowers et al 2006
- First cut of migration of particle push from SSE to Cell SIMD took 1 day.

VPIC Design considerations for Roadrunner:

- 1. Data locality
- 2. Throughput
- 3. Concurrency

The core VPIC algorithm avoids MPI collectives and ensures a high degree of concurrency

 In vacuum, the field advance reduces to a FDTD method and the simulation must satisfy the Courant condition:

$$\left(\frac{c\delta_t}{\delta_x}\right)^2 + \left(\frac{c\delta_t}{\delta_y}\right)^2 + \left(\frac{c\delta_t}{\delta_z}\right)^2 < 1$$

Finite speed of light implies locality in field solve

 VPIC employs a so-called "charge conserving" scheme to avoid a Poisson (elliptic) solve:

$$\nabla \cdot \vec{J} = -\frac{2P}{2P}$$

$$-4\pi (\nabla \cdot \vec{J}) + c\nabla \cdot \nabla \times \vec{B} = 4\pi \frac{2P}{2P}$$

$$\nabla \cdot \left[c \nabla \times \vec{R} - 4\pi \vec{J} \right] = 4\pi \frac{2P}{2P}$$

$$= \frac{2\vec{E}}{2P}$$

$$= \frac{2\vec{E}}{2P}$$
Apply
$$\int_{0}^{1} dt' \cdot Then, \text{ provided } \nabla \cdot \vec{E} = 4\pi p$$
initially,
$$\nabla \cdot \vec{E} = 4\pi p \text{ thereafter.}$$

Performance

Many applications were ported to Cell and hybrid and achieved significant speedup

Application	Туре	Class	Cell Only (kernels)		Hybrid (Opteron+Cell)	
			CBE	eDP	CBE+IB	eDP+PCIe
SPaSM (10/07)	Science	full app	3x	4.5x	2.5x	>4x
SPaSM (now)			5x	7.5x	4x	>6x
VPIC	Science	full app	9x	9x	6x	>7x
Milagro	IC	full app	5x	6.5x	5x	>6x
Sweep3D	IC	kernel	5x	9x	5x	>5x

- all comparisons are to a single Opteron core
- parallel behavior unaffected, as will be shown in the scaling results
- first 3 columns are measured, last column is projected

These results were achieved with a relatively modest level of effort.

Code	Class	Language	Lines	FY07	
		Language	Orig.	Modified	FTEs
VPIC	full app	C/C++	8.5k	10%	2
SPaSM	full app	С	34k	20%	2
Milagro	full app	C++	110k	30%	2 x 1
Sweep3D	kernel	С	3.5k	50%	2 x 1

- * all staff started with little or no knowledge of Cell / hybrid programming
- ❖ 2 x 1 denotes separate efforts of roughly 1 FTE each
- most efforts also added code

Roadrunner architecture is flexible - Applications are free to use hardware in most appropriate manner

Roadrunner at IBM in Poughkeepsie - Highlights

- Three LANL science applications (VPIC, SPaSM, and Petavision) were able to run in June in Poughkeepsie before system deployment at LANL
- All ran successfully on up to the entire machine (17 CU) and achieved predicted speedup.
- One application (VPIC) was able to run a series of science runs on up to 2 CU and achieved a 9x speedup over Opteron-only.
 - 9 of 10 runs completed; the 10th identified a DIMM failure on the machine.

Excellent weak scalability was demonstrated by each application

ASE INISA

Conclusions

- Profound advances in supercomputing power are going to change the way we do science over the next decade.
- Tapping this potential requires that we rethink how we do supercomputing. We must optimize applications and algorithms for:
 - Data motion
 - Throughput
 - Concurrency
- Next-generation machines such as Roadrunner are an excellent place to develop algorithms; by designing for these platforms, one can "future-proof" applications for whatever the future brings.
- Several applications have already migrated successfully to hybrid platforms and have realized order-of-magnitude speedups over existing platforms. (See discussions in tomorrow's meeting).

Particle sorting improves data locality

- Particles sorted periodically in O(N) by voxel index. They don't move far per step, so sorting is infrequent (tens to hundreds of time steps).
- We process particles (approximately) sequentially; field data loaded once from memory and cached.
- Improves performance on both homogeneous and hybrid platforms; accelerated sort being implemented

SPaSM Poughkeepsie Highlights

- Full 17 CU run achieved 361 TF
 - 26% of theoretical peak (double precision 1.376 PF)
 - 37 GF per Cell (36% of SPE peak)
 - Kernel operation achieves 45% of Cell theoretical peak
- Science runs (these will begin today)
 - Science runs will study the ejection of material from a copper crystal containing various surface imperfections and subjected to shock loading
 - 8 CUs for 8 hours each (at least two of these type)
 - 4 CUs for 48 hours (at least two of these types)
 - "Sweet spot" between 1-3 billion atoms per CU

PetaVision Highlights

- 500 million neuron simulation in visual cortex on 17CUs
 - Full run achieved sustained performance of 1.14 PF
 - 38% of theoretical max performance (single precision 3.0 PF)
 - 88 GF per Cell (43% of SPE peak)
 - Used simple neurons with Zucker connection weights
 - Excited by co-circular line segments
 - First large-scale calculation with Zucker weights and spiking neurons
- Next step: add a complex neuron layer with stored weights to add learning
- Ultimate goal of the project is synthetic cognition

Modest capability of Cell PPE: Get to play "Amdahl's Whack-a-mole"

- The Cell PPE, where VPIC lives, is a processor of modest performance.
- Highly optimized particle push means relative cost of other parts of algorithm creep up faster (particle sort, field advance, boundary handler).
- For very high performance, acceleration acquires more of an "all or nothing" character.

